Predicting Earthquakes with Hierarchical Neural Network Models

Matheus Junqueira^a, Yoshito Hirata

^a Degree Programs in Systems and Information Engineering Graduate School of Science and Technology University of Tsukuba – Japan

October 2024

理工情報生命学術院 システム情報工学研究群

Degree Programs in Systems and Information Engineering Graduate School of Science and Technology

スライドの日本語版! tinyurl.com/mrx3b28y

1 Introduction

➡ Edit distances

Seismicity indicators

Hierarchical Neural Network

Introduction ○●○	Feature Engineering	Forecasting Framework	Results 0000	Conclusions 0000	
Introduction	า			https://tinyurl.co	om/mrx3b28y

- Applying machine learning in earthquake forecasting faces many obstacles
- ▶ The major one being the amount and quality of data
 - Solution with the second secon
 - Catalogs don't reach far enough back in time
 - Changes in data collection methods over time

Introduction ○●○	Feature Engineering	Forecasting Framework	Results 0000	Conclusions 0000	
Introduction	1		ł		om/mrx3b28y

- Applying machine learning in earthquake forecasting faces many obstacles
- The major one being the amount and quality of data
 - Solution with the second secon
 - Catalogs don't reach far enough back in time
 - Changes in data collection methods over time
- We try to circumvent this problem by:
 - extracting as much information as possible from the catalogs
 - devising a prediction model that can process that information

Introduction ○○●	Feature Engineering 00000000	Forecasting Framework	Results 0000	Conclusions 0000	
Introductio	n				

We limit our analysis to fault-independent information

- Catalogs with only basic earthquake characteristics: timestamp, magnitude, depth, latitude, longitude
- Solution Widely available for various seismic regions around the globe
- ightarrow
 ightarrow More data to work with
- \Rightarrow Applicability to various regions

Introduction ○○●	Feature Engineering	Forecasting Framework	Results 0000	Conclusions 0000	
Introductio	on				

- We limit our analysis to fault-independent information
 - Catalogs with only basic earthquake characteristics: timestamp, magnitude, depth, latitude, longitude
 - Solution with the set of the set
 - ightarrow
 ightarrow More data to work with
 - ightarrow ightarrow Applicability to various regions
- Existing methods do not seem to leverage all the information provided by these datasets
- Improvements can be achieved in:
 - modeling of the problem
 - feature engineering

Introductio

Feature Engineering
 Edit distances
 Seismicity indicators

Forecasting Framework
 Hierarchical Neural Network

Introduction OOO	Feature Engineering O●○○○○○○	Forecasting Framework	Results 0000	Conclusions 0000	
Feature Engi	neering				

- Based on the earthquake catalog information, we derive two kinds of features:
 - Distances between earthquake point patterns
 - Seismicity indicators
- Our prediction model, however, can be extended to other features

Introduction

Peature Engineering
 Edit distances

Seismicity indicators

Forecasting Framework
 Hierarchical Neural Network

Introduction 000	Feature Engineering ○○○●○○○○○	Forecasting Framework	Results 0000	Conclusions OOOO	
Edit distance	es				

- We pre-process the earthquake catalog to obtain the sets of earthquakes in time windows of a certain length
 - 7 days for next-day forecasting
- Each set is a series of points scattered over a tridimensional space, with extra information associated to each point:
 - 🔶 magnitude
 - 🔄 timestamp
- These sets can be compared by using statistical tools
 - ✤ We use edit distances
- Main idea is that similar earthquake patterns will result in similar outcomes¹

¹M. H. Junqueira Saldanha and Y. Hirata (2022). "Solar activity facilitates daily forecasts of large earthquakes ". In: Chaos: An Interdisciplinary Journal of Nonlinear Science 32.6, p. 061107.

Introduction OOO	Feature Engineering ○○○○●○○○○	Forecasting Framework	Results 0000	Conclusions 0000	
Eastura Engi	nooring				

Introduction OOO	Feature Engineering ○○○○○○○○	Forecasting Framework	Results 0000	Conclusions 0000	
Edit distanc	es				

▶ Let *P*₁ and *P*₂ be two marked point processes:

 $P_1 = \{(t_i, u_i) \mid 1 \le i \le N_1\} \qquad P_2 = \{(s_j, v_j) \mid 1 \le j \le N_2\}$

▶ The idea is to transform P₁ into P₂ using primitive operations, each incurring a cost.

- ▶ The primitive operations are:
 - Solution: insert point (s_j, v_j) from P_2 into P_1 , paying a cost of 1;
 - **Deletion**: remove point (t_i, u_i) from P_1 , paying a cost of 1;
 - Shifting: replace point (t_i, u_i) in P₁ by the point (s_j, v_j) from P₂, paying a cost that depends on how different these two points are.

• The edit distance²³ is defined as the lowest possible cost necessary to transform P_1 to P_2 .

³S. Suzuki, Y. Hirata, and K. Aihara (2010). "Definition of distance for marked point process data and its application to recurrence plotbased analysis of exchange tick data of foreign currencies". In: *International Journal of Bifurcation and Chaos* 20.11, pp. 3699–3708.

²J. D. Victor and K. P. Purpura (1997). "Metric-space analysis of spike trains: theory, algorithms and application". In: *Network: computation in neural systems* 8.2, pp. 127–164.

Introduction

Feature Engineering
 Edit distances
 Seismicity indicators

Forecasting Framework
 Hierarchical Neural Network

Introduction OOO	Feature Engineering ○○○○○○○●○	Forecasting Framework	Results 0000	Conclusions OOOO	
Seismicity i	ndicators				

Now consider the sets of earthquakes over time-windows of size T

Seismicity indicators can be calculated for each of these sets

mean and maximum magnitudes;

rate of release of seismic energy, given by

$$\frac{\sum_{i=1}^{k} \left(10^{10.8+1.5e_i^{\mathrm{mag}}}\right)}{\Delta t},$$

where Δt is the length of the time window;

• time elapsed between all earthquakes that exceed a certain magnitude threshold τ ;

Introduction OOO	Feature Engineering	Forecasting Framework	Results 0000	Conclusions 0000	
Seismicity i	ndicators				

- - sum of square errors of the magnitudes to the regression line of the GR law;
 - magnitude deficit, defined as the difference between the expected maximum magnitude (according to the GR law) and the observed maximum magnitude; and
 - coefficient of variation of inter-event times, after removing earthquakes with magnitude below a certain threshold τ.

Introduction OOO	Feature Engineering ○○○○○○○○	Forecasting Framework	Results 0000	Conclusions 0000	
Seismicity i	ndicators				

- - sum of square errors of the magnitudes to the regression line of the GR law;
 - magnitude deficit, defined as the difference between the expected maximum magnitude (according to the GR law) and the observed maximum magnitude; and
 - coefficient of variation of inter-event times, after removing earthquakes with magnitude below a certain threshold τ.

Distance to each fault line (undergoing improvements)

Seismicity indicators

3 Forecasting Framework Hierarchical Neural Network

- If we calculate these features for different sizes of time-windows, we are left with a large volume of features to work with
- ► However, more features ⇒ bigger models ⇒ more data needed for good fit (Bengio, Goodfellow, and Courville 2017)⁴

⁴Y. Bengio, I. Goodfellow, and A. Courville (2017). *Deep learning*. Vol. 1. MIT press Cambridge, MA, USA.

- If we calculate these features for different sizes of time-windows, we are left with a large volume of features to work with
- ► However, more features ⇒ bigger models ⇒ more data needed for good fit (Bengio, Goodfellow, and Courville 2017)⁴
- ▶ To tackle this, we design a neural network architecture particular for the problem at hand

Objectives:

- Seatures are mathematically processed in a logical manner
- Minimal number of trainable weights
- Sector Se

⁴Y. Bengio, I. Goodfellow, and A. Courville (2017). *Deep learning*. Vol. 1. MIT press Cambridge, MA, USA.

Introduction 000	Feature Engineering	Forecasting Framework ○○●	Results 0000	Conclusions 0000	
Forecasting	Framework				

- The features associated with time-window T_i are fed to one single neural sub-network
 - There is no need to evaluate linear-combinations of features of different time window lengths
 - Nor linear combinations between seismicity indicators and edit distances
- The outputs of the sub-network are then fed to a neural network that will then derive the predictions

➡ Edit distances

Seismicity indicators

Hierarchical Neural Network

Introduction 000	Feature Engineering 000000000	Forecasting Framework	Results O●OO	Conclusions 0000	
Results					

- ▶ We apply our models on Japan, New Zealand and Balkan Catalogs⁵
- ▶ Binary classification using the 99% quantile of magnitudes as threshold

11

- ▶ Overall accuracy: 91.31%
- Class weighted accuracy: 57.50%

⁵Catalogs from the Japanese Meteorological Agency, the New Zealand GeoNet project and the University of Athens. Minimum magnitude threshold: 2.5

Introduction 000	Feature Engineering 000000000	Forecasting Framework	Results ○○●○	Conclusions 0000	
Results					

Overall accuracy: 79.53%
 Class weighted accuracy: 56.50%

Introduction OOO	Feature Engineering	Forecasting Framework	Results ○○○●	Conclusions 0000	
Doculto					

- ▶ Overall accuracy: 92.35%
- Class weighted accuracy: 60.50%

➡ Edit distances

Seismicity indicators

➡ Hierarchical Neural Network

Introduction 000	Feature Engineering 000000000	Forecasting Framework	Results 0000	Conclusions O●OO	
Conclusions	;				

- We found that earthquake catalogs without fault-dependent information can still provide vast amounts of features
- Processing becomes difficult as the number of features increases

Introduction 000	Feature Engineering	Forecasting Framework	Results 0000	Conclusions O●OO	
Conclusions	;				

- We found that earthquake catalogs without fault-dependent information can still provide vast amounts of features
- Processing becomes difficult as the number of features increases
- We present a neural network architecture that
 - Processes features in a logical manner
 - Minimizes number of trainable weights
 - S ls flexible and easy to extend for different features and use in different regions

Introduction	Feature Engineering	Forecasting Framework	Results	Conclusions	
000	000000000	OOO	0000	○O●O	
Conclusions					

- Results so far are promising, bringing improvements to our past results (Junqueira Saldanha and Hirata 2022)⁶
- Possible improvements relative to recent work: (Yavas et al. 2024)⁷
 - 30-day forecasting
 - Solution ← Solutio
 - Large magnitudes accuracy: 11.9% 27.0% (estimated)

⁶M. H. Junqueira Saldanha and Y. Hirata (2022). "Solar activity facilitates daily forecasts of large earthquakes ". In: Chaos: An Interdisciplinary Journal of Nonlinear Science 32.6, p. 061107.

⁷C. E. Yavas et al. (2024). "Predictive modeling of earthquakes in los angeles with machine learning and neural networks". In: *IEEE* Access.

Introduction 000	Feature Engineering 000000000	Forecasting Framework	Results 0000	Conclusions 0000	

Ihank You!

Introduction OOO	Feature Engineering 000000000	Forecasting Framework	Results 0000	Conclusions OOOO	References
References I					

- Bengio, Y., I. Goodfellow, and A. Courville (2017). *Deep learning*. Vol. 1. MIT press Cambridge, MA, USA.
- Junqueira Saldanha, M. H. and Y. Hirata (2022). "Solar activity facilitates daily forecasts of large earthquakes ♂". In: *Chaos: An Interdisciplinary Journal of Nonlinear Science* 32.6, p. 061107.
- Suzuki, S., Y. Hirata, and K. Aihara (2010). "Definition of distance for marked point process data and its application to recurrence plot-based analysis of exchange tick data of foreign currencies". In: *International Journal of Bifurcation and Chaos* 20.11, pp. 3699–3708.
- Victor, J. D. and K. P. Purpura (1997). "Metric-space analysis of spike trains: theory, algorithms and application". In: *Network: computation in neural systems* 8.2, pp. 127–164.
- Yavas, C. E. et al. (2024). "Predictive modeling of earthquakes in los angeles with machine learning and neural networks". In: *IEEE Access*.