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Introduction https://tinyurl.com/mrx3b28y

Applying machine learning in earthquake forecasting faces many obstacles

Themajor one being the amount and quality of data
Missing data near the lower detection threshold
Catalogs don’t reach far enough back in time
Changes in data collection methods over time

We try to circumvent this problem by:
extracting as much information as possible from the catalogs
devising a prediction model that can process that information
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Introduction

We limit our analysis to fault‑independent information
Catalogs with only basic earthquake characteristics: timestamp, magnitude, depth, latitude,
longitude
Widely available for various seismic regions around the globe
⇒More data to work with
⇒ Applicability to various regions

Existing methods do not seem to leverage all the information provided by these datasets

Improvements can be achieved in:
modeling of the problem
feature engineering
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Feature Engineering

Based on the earthquake catalog information, we derive two kinds of features:
Distances between earthquake point patterns
Seismicity indicators

Our prediction model, however, can be extended to other features
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Edit distances

We pre‑process the earthquake catalog to obtain the sets of earthquakes in time windows
of a certain length

7 days for next‑day forecasting

Each set is a series of points scattered over a tridimensional space, with extra information
associated to each point:

magnitude
timestamp

These sets can be compared by using statistical tools
We use edit distances

Main idea is that similar earthquake patterns will result in similar outcomes1

1M. H. Junqueira Saldanha and Y. Hirata (2022). “Solar activity facilitates daily forecasts of large earthquakes ”. In: Chaos: An Inter‑
disciplinary Journal of Nonlinear Science 32.6, p. 061107.4

https://aip.scitation.org/doi/abs/10.1063/5.0096150
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Feature Engineering
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Edit distances

Let P1 and P2 be twomarked point processes:

P1 = {(ti, ui) | 1 ≤ i ≤ N1} P2 = {(sj, vj) | 1 ≤ j ≤ N2}

The idea is to transform P1 into P2 using primitive operations, each incurring a cost.

The primitive operations are:
Insertion: insert point (sj, vj) from P2 into P1, paying a cost of 1;
Deletion: remove point (ti, ui) from P1, paying a cost of 1;
Shifting: replace point (ti, ui) in P1 by the point (sj, vj) from P2, paying a cost that depends on
how different these two points are.

The edit distance23 is defined as the lowest possible cost necessary to transform P1 to P2.

2J. D. Victor and K. P. Purpura (1997). “Metric‑space analysis of spike trains: theory, algorithms and application”. In: Network: compu‑
tation in neural systems 8.2, pp. 127–164.

3S. Suzuki, Y. Hirata, and K. Aihara (2010). “Definition of distance for marked point process data and its application to recurrence plot‑
based analysis of exchange tick data of foreign currencies”. In: International Journal of Bifurcation and Chaos 20.11, pp. 3699–3708.6
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Seismicity indicators

Now consider the sets of earthquakes over time‑windows of size T
T = 7, 15, 30, 60, 90, 180, 360 days

Seismicity indicators can be calculated for each of these sets
mean andmaximummagnitudes;
rate of release of seismic energy, given by∑k

i=1

(
1010.8+1.5emag

i

)
∆t

,

where∆t is the length of the time window;
time elapsed between all earthquakes that exceed a certain magnitude threshold τ ;
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Seismicity indicators

a, b values of the Gutenberg–Richter’s law fit;

sum of square errors of the magnitudes to the regression line of the GR law;

magnitude deficit, defined as the difference between the expectedmaximummagnitude
(according to the GR law) and the observedmaximummagnitude; and

coefficient of variation of inter‑event times, after removing earthquakes withmagnitude below a
certain threshold τ .

Distance to each fault line (undergoing improvements)
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Forecasting Framework

If we calculate these features for different sizes of time‑windows, we are left with a large
volume of features to work with

However, more features⇒ bigger models⇒more data needed for good fit (Bengio,
Goodfellow, and Courville 2017)4

To tackle this, we design a neural network architecture particular for the problem at hand

Objectives:
Features are mathematically processed in a logical manner
Minimal number of trainable weights
Extensibility of the model to use different kinds of features

4Y. Bengio, I. Goodfellow, and A. Courville (2017). Deep learning. Vol. 1. MIT press Cambridge, MA, USA.9
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Forecasting Framework

The features associated with time‑window
Ti are fed to one single neural sub‑network

There is no need to evaluate
linear‑combinations of features of
different time window lengths
Nor linear combinations between
seismicity indicators and edit distances

The outputs of the sub‑network are then
fed to a neural network that will then
derive the predictions
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Results

We apply our models on Japan, New Zealand and Balkan Catalogs5

Binary classification using the 99% quantile of magnitudes as threshold

Overall accuracy: 91.31%
Class weighted accuracy: 57.50%

5Catalogs from the Japanese Meteorological Agency, the New Zealand GeoNet project and the University of Athens. Minimummagni‑
tude threshold: 2.511
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Results

Overall accuracy: 79.53%
Class weighted accuracy: 56.50%
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Results

Overall accuracy: 92.35%
Class weighted accuracy: 60.50%
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Conclusions

We found that earthquake catalogs without fault‑dependent information can still provide
vast amounts of features

Processing becomes difficult as the number of features increases

We present a neural network architecture that
Processes features in a logical manner
Minimizes number of trainable weights
Is flexible and easy to extend for different features and use in different regions
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Conclusions

Results so far are promising, bringing improvements to our past
results (Junqueira Saldanha and Hirata 2022)6

Possible improvements relative to recent work: (Yavas et al. 2024)7

30‑day forecasting
Overall accuracy: 55.97%
Large magnitudes accuracy: 11.9% – 27.0% (estimated)

6M. H. Junqueira Saldanha and Y. Hirata (2022). “Solar activity facilitates daily forecasts of large earthquakes ”. In: Chaos: An Inter‑
disciplinary Journal of Nonlinear Science 32.6, p. 061107.

7C. E. Yavas et al. (2024). “Predictive modeling of earthquakes in los angeles with machine learning and neural networks”. In: IEEE
Access.15

https://aip.scitation.org/doi/abs/10.1063/5.0096150
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