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» Applying machine learning in earthquake forecasting faces many obstacles

» The major one being the amount and quality of data
& Missing data near the lower detection threshold
& Catalogs don’t reach far enough back in time
& Changes in data collection methods over time
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» Applying machine learning in earthquake forecasting faces many obstacles

» The major one being the amount and quality of data

& Missing data near the lower detection threshold
& Catalogs don’t reach far enough back in time
& Changes in data collection methods over time

» We try to circumvent this problem by:

& extracting as much information as possible from the catalogs
& devising a prediction model that can process that information
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Introduction

» We limit our analysis to fault-independent information
& Catalogs with only basic earthquake characteristics: timestamp, magnitude, depth, latitude,
longitude
& Widely available for various seismic regions around the globe
© = More data to work with
& = Applicability to various regions
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Introduction

» We limit our analysis to fault-independent information
& Catalogs with only basic earthquake characteristics: timestamp, magnitude, depth, latitude,
longitude
& Widely available for various seismic regions around the globe
© = More data to work with
& = Applicability to various regions

» Existing methods do not seem to leverage all the information provided by these datasets

» Improvements can be achieved in:

< modeling of the problem
& feature engineering



e Feature Engineering
& Edit distances
& Seismicity indicators
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Feature Engineering

» Based on the earthquake catalog information, we derive two kinds of features:

& Distances between earthquake point patterns
& Seismicity indicators

» Our prediction model, however, can be extended to other features
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Edit distances

» We pre-process the earthquake catalog to obtain the sets of earthquakes in time windows
of a certain length

& 7 days for next-day forecasting

» Each setis a series of points scattered over a tridimensional space, with extra information
associated to each point:

9 magnitude
& timestamp

» These sets can be compared by using statistical tools
© We use edit distances

P Main idea is that similar earthquake patterns will result in similar outcomes!

IM. H. Junqueira Saldanha and Y. Hirata (2022). “Solar activity facilitates daily forecasts of large earthquakes (3 . In: Chaos: An Inter-
4 disciplinary Journal of Nonlinear Science 32.6, p. 061107.


https://aip.scitation.org/doi/abs/10.1063/5.0096150
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Edit distances

» Let P; and P, be two marked point processes:
Pr={(t,uw) | 1<i<Ni}  Pa={(sv) |1 <j< N2}
» Theideais to transform Py into P using primitive operations, each incurring a cost.

» The primitive operations are:
& Insertion: insert point (s;, v;) from P; into Py, paying a cost of 1;
9 Deletion: remove point (t;, u;) from P, paying a cost of 1;
& Shifting: replace point (t;, u;) in Py by the point (s;, v;) from P2, paying a cost that depends on
how different these two points are.

P The edit distance?? is defined as the lowest possible cost necessary to transform P; to P.

2J.D. Victor and K. P. Purpura (1997). “Metric-space analysis of spike trains: theory, algorithms and application”. In: Network: compu-
tation in neural systems 8.2, pp. 127-164.
3S. Suzuki, Y. Hirata, and K. Aihara (2010). “Definition of distance for marked point process data and its application to recurrence plot-
6 based analysis of exchange tick data of foreign currencies”. In: International Journal of Bifurcation and Chaos 20.11, pp. 3699-3708.
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Seismicity indicators

» Now consider the sets of earthquakes over time-windows of size T
& T=17,15,30,60,90, 180, 360 days

P Seismicity indicators can be calculated for each of these sets
“ mean and maximum magnitudes;

S rate of release of seismic energy, given by

ZLl (1010.8+1A5e,."“ag)
At ’

where At is the length of the time window;
& time elapsed between all earthquakes that exceed a certain magnitude threshold 7;
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Seismicity indicators

» & g, bvaluesof the Gutenberg-Richter’s law fit;
& sum of square errors of the magnitudes to the regression line of the GR law;

© magnitude deficit, defined as the difference between the expected maximum magnitude
(according to the GR law) and the observed maximum magnitude; and

& coefficient of variation of inter-event times, after removing earthquakes with magnitude below a
certain threshold 7.
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Seismicity indicators

» & g, bvaluesof the Gutenberg-Richter’s law fit;
& sum of square errors of the magnitudes to the regression line of the GR law;

© magnitude deficit, defined as the difference between the expected maximum magnitude
(according to the GR law) and the observed maximum magnitude; and

& coefficient of variation of inter-event times, after removing earthquakes with magnitude below a
certain threshold 7.

Japan

P Distance to each fault line (undergoing improvements)
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& Hierarchical Neural Network
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Forecasting Framework

» If we calculate these features for different sizes of time-windows, we are left with a large
volume of features to work with

» However, more features = bigger models = more data needed for good fit (Bengio,
Goodfellow, and Courville 2017)*

9 4y, Bengio, |. Goodfellow, and A. Courville (2017). Deep learning. Vol. 1. MIT press Cambridge, MA, USA.



Forecasting Framework 5 References
ceo

Forecasting Framework

» If we calculate these features for different sizes of time-windows, we are left with a large
volume of features to work with

» However, more features = bigger models = more data needed for good fit (Bengio,
Goodfellow, and Courville 2017)*

» To tackle this, we design a neural network architecture particular for the problem at hand

» Objectives:
& Features are mathematically processed in a logical manner
& Minimal number of trainable weights
& Extensibility of the model to use different kinds of features

9 4y, Bengio, |. Goodfellow, and A. Courville (2017). Deep learning. Vol. 1. MIT press Cambridge, MA, USA.



Forecasting Framework
ooe

edit ‘(
distances
e
me | P The features associated with time-window
windows L .
T; are fed to one single neural sub-network
© Thereis no need to evaluate
o linear-combinations of features of
statistics | . . .
compued ) different time window lengths
v ;s 1 output . . .
1’2%% | & Nor linear combinations between
L seismicity indicators and edit distances
» The outputs of the sub-network are then
atsce | fed to a neural network that will then
computed <\ derive the predictions
sdoday |

window [‘

10



O Results




Introduction En 3 Results

[e] lele}

Results

» We apply our models on Japan, New Zealand and Balkan Catalogs®
» Binary classification using the 99% quantile of magnitudes as threshold

Prediction accuracy for Japan

M<5.9 0.08

» Overall accuracy: 91.31%
P Class weighted accuracy: 57.50%

M=25.9 0.23
prediction prediction
ucces: failure

5Catalogs from the Japanese Meteorological Agency, the New Zealand GeoNet project and the University of Athens. Minimum magni-
11 tude threshold: 2.5
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Prediction accuracy for New Zealand

M<4.73 0.2

M=4.73 0.33
prediction prediction
success failure
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» Overall accuracy: 79.53%
» Class weighted accuracy: 56.50%
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Prediction accuracy for the Balkan region

M<42 0.074

M=24.2 0.28
prediction prediction
success failure
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» Overall accuracy: 92.35%
» Class weighted accuracy: 60.50%
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Conclusions

» We found that earthquake catalogs without fault-dependent information can still provide
vast amounts of features

» Processing becomes difficult as the number of features increases

14
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Conclusions

» We found that earthquake catalogs without fault-dependent information can still provide
vast amounts of features

» Processing becomes difficult as the number of features increases

» We present a neural network architecture that
S Processes features in a logical manner
S Minimizes number of trainable weights
& s flexible and easy to extend for different features and use in different regions

14
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Conclusions

» Results so far are promising, bringing improvements to our past
results (Junqueira Saldanha and Hirata 2022)°
P Possible improvements relative to recent work: (Yavas et al. 2024)’
& 30-day forecasting
& Overall accuracy: 55.97%
& Large magnitudes accuracy: 11.9% - 27.0% (estimated)

5M. H. Junqueira Saldanha and Y. Hirata (2022). “Solar activity facilitates daily forecasts of large earthquakes 2 . In: Chaos: An Inter-
disciplinary Journal of Nonlinear Science 32.6, p. 061107.
7C. E. Yavas et al. (2024). “Predictive modeling of earthquakes in los angeles with machine learning and neural networks”. In: IEEE
15  Access.


https://aip.scitation.org/doi/abs/10.1063/5.0096150

Thank You!
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