Matheus Henrique Junqueira Saldanha and Adriano Kamimura Suzuki
May 2021
Name | CPU | Memory | Disk | Motherboard |
---|---|---|---|---|
Andromeda | AMD FX(tm)-8350 Eight-Core Processor | 4x Corsair 8GB DIMM DDR3 Synchronous 800 MHz | Seagate HD 2TB ST2000DM001-1ER1 | Gigabyte 970A-D3 |
HalleyHD | Intel Core i7-4790 CPU 3.60GHz | 4x AMI 8GB DIMM DDR3 Synchronous 1600 MHz | Seagate HD 2TB ST2000DM001-1CH1 | Gigabyte Z97X-SLI-CF |
HalleySSD | Intel Core i7-4790 CPU 3.60GHz | 4x AMI 8GB DIMM DDR3 Synchronous 1600 MHz | Kingston SSD 240GB SA400S3 | Gigabyte Z97X-SLI-CF |
Helix | Intel Core i5-4440 CPU 3.10GHz | 4x Kingston 4GB DIMM DDR3 Synchronous 1333 MHz | Kingston SSD 240GB SA400S3 | Gigabyte Z87-D3HP-CF |
$ cd /tmp/inference-code/
$ R
> source("inference.r");
The R code is simply:
require(rmutil);
require(nortest);
set.seed(12345);
data = read.csv("eweibull-dataset.csv");
params_df = data[c("param_s", "param_m", "param_f")];
sum_sample = function(n, s, m, f){
data = rgweibull(n=1000, s=s, m=m, f=f);
for(i in 2:n){
data = data + rgweibull(n=1000, s=s, m=m, f=f);
}
return(data);
}
counts = NULL;
for(row in 1:nrow(params_df)){
params = as.numeric(params_df[row,]);
for(sum_size in seq(10, 10000, by=5)){
results = NULL;
for(i in 1:20)
results = c(results, lillie.test(sum_sample(sum_size, s=params[1], m=params[2], f=params[3]))$p.value);
count = sum(results > 0.4);
if(count >= 16){
print(sum_size);
counts = c(counts, sum_size);
break;
}
}
}
Where the file "eweibull-dataset.csv" is the one that can be downloaded under section "Data".
To change the p-value threshold, modify the line count = sum(results > 0.4);
, in particular, change 0.4
to the desired threshold.
Results are returned into vector counts
.