High Performance Pairwise Interaction Counting 15

A Parallel Algorithm for Even N

As mentioned in Section 4, when the problem size N is even, a small modification
to Algorithm 4 is required. This modification is shown in Algorithm 5, whose first
loop is similar to the one in the algorithm initially shown, and can also be seen
as a loop where each bead compares itself with subsequent beads in a circular
fashion. Here we also model this circularity using modular arithmetic, so bead i
in iteration s evaluates bead reach(s), and is evaluated by bead reached(s).

Algorithm 5: Proposed algorithm for calculating Symmetric Pairwise Interac-
tions (SPI) for even N.
for (i =0 to N-1){
for (j =1 to (N-2)/2)
interactions += interact(obj[i], obj[(i+]j)%N]);
if (i < N/2) /* only half beads perform one more iteration */
interactions += interact(obj[i], obj[(i+N/2)%N]);
}

For odd number of beads, the problem was that reach(s) eventually crossed
with reached(s), which was when interactions among beads began to be calcu-
lated twice (illustrated in Figure 1). For even N, what happens is that reach(s)
eventually becomes equal to reached(s), which means that the same interac-
tion is calculated twice in the same iteration, numbered N/2. This situation
can be avoided by allowing only the first half of the bead vector to perform
such iteration, which is the purpose of the if condition in Algorithm 5. We now
again prove that this algorithm perform the same number of comparisons as
the straightforward algorithm (that is, N.(N — 1)/2) and that all of them are
different.

Proposition 3. The proposed algorithm evaluates N.(N — 1)/2 interactions
among beads, for even N.
Proof. As seen in Algorithm 5, all N beads initially perform (N —2)/2 compar-
isons, which gives N.(N — 2)/2 comparisons. Note that (N — 2)/2 is an integer
number because N is even. After that, N/2 beads perform one more iteration,
which gives N/2 additional comparisons. Summing everything yields

N.(N —2) +N.(l) N.(N—-2+41) N.(N-1)

2 2 2 2

which is the number of existent pairwise interactions. O

Proposition 4. All N.(N — 1)/2 interactions evaluated by the proposed algo-
rithm are different from each other, for even N.

Proof. Take two arbitrarily different beads ¢ and j, with ¢ < j. Each bead
evaluates the interaction between itself and subsequent beads, so for beads ¢ and
j one side of the interactions they evaluate is inherently different, since i # j.
Consequently, both beads would only evaluate the same interaction if it was the
interaction among beads ¢ and j themselves.



16 M. H. J. Saldanha, P. S. L. de Souza

As seen in Proposition 2, bead ¢ evaluates its interaction with bead j when
s = j—1, and bead j evaluates bead ¢ when s = N — (j — ). Letting the distance
between ¢ and j be called d = j — i, then we have

s=d bead i evaluates j

s =N —d bead j evaluates i

Looking back at Algorithm 5, the beads can perform up to N/2 iterations, so a
hazard would occur if there existed a d € {1,..., N — 1} (valid distance between
beads ¢ and j) such that s was a valid iteration, that is,

s=de{l,...,N/2} (5)

s=N-de{l,...,N/2} (6)

Note that as d increases, N — d decreases; taking d = (N — 2)/2 satisfies (5),
and (6) becomes

N-2 2N-(N-2) N+2

—N—d=N-—
s 2 2 2

So (6) is still not satisfied. At this point, decreasing d would increase the value of
(6) and it would remain not satisfied, so d < (N — 2)/2 is proven to not satisfy
both equations at the same time. What is left is to increase d, and the only
possibility is to take d = N/2, which is the highest value of d that still satisfies
(5). Equation (6) would then be satisfied because

N N

s=N—-d=N-—=—¢{l,...,N/2}
2 2
This means that in iteration s = N/2, all pairs of beads 7 and j whose distance
from each other is N/2 evaluate themselves at the same time, giving a duplicate
interaction evaluation. However, Algorithm 5 doesn’t have this problem precisely
because in iteration s = N/2 it allows only a set of beads to execute, a set in
which all beads are within a distance d < N/2 from each other; this can be done
by taking the set of beads {0,1,..., (N —2)/2} (first half of the bead vector), in
which the largest distance is between beads 0 and (N — 2)/2, giving a distance
of (N—-2)/2 < N/2.

Therefore, in summary, a hazard occurs if bead ¢ evaluates bead j in iteration
s1 of the algorithm, and bead j evaluates bead i in iteration ss. Algorithm 5
performs iterations s € {1,..., N/2}, and we have proved that the only hazard
that can occur is that beads separated by a distance of N/2 evaluate each other
at the same time in iteration s = N/2. Since Algorithm 5 only allows the first
half of the bead vector to perform iteration N/2, no hazard occurs during the
algorithm. Hence, all the evaluated interactions are different from each other,
concluding the proof. O

Because the algorithm evaluates N.(IN — 1)/2 interactions, which is precisely
the number of pairwise interactions that exist among beads, and all interactions
are different from each other, then Algorithm 5 is correct.



